Virtio SCSI

An alternative virtualized storage stack for KVM

Stefan Hajnoczi stefanha@linux.vnet.ibm.com Paolo Bonzini pbonzini@redhat.com

Overview

- Limitations in QEMU's storage stack
- virtio-scsi: a new storage stack for KVM
- Improving QEMU as a SCSI target
- tcm_vhost: using the in-kernel target with KVM

• High performance

- Paravirtualized device
- Ring buffers provide a simple and efficient mechanism for guest-host communication
- Limited features

Limited scalability

• Not a drop-in replacement

• High performance

- \circ Paravirtualized device
- Ring buffers provide a simple and efficient mechanism for guest-host communication

Limited features

- Even trivial new features require a change to the spec
- Limited SCSI passthrough
- No access to advanced features
- Limited scalability

• Not a drop-in replacement

- High performance
 - \circ Paravirtualized device
 - Ring buffers provide a simple and efficient mechanism for guest-host communication
- Limited features
 - \circ Even trivial new features require a change to the spec
 - Limited SCSI passthrough
 - No access to advanced features

Limited scalability

- \circ One PCI device per disk
- Multifunction devices and PCI bridges help, but they are not really a solution
- Not a drop-in replacement

- High performance
 - \circ Paravirtualized device
 - Ring buffers provide a simple and efficient mechanism for guest-host communication
- Limited features
 - \circ Even trivial new features require a change to the spec
 - Limited SCSI passthrough
 - No access to advanced features
- Limited scalability
 - \circ One PCI device per disk
 - Multifunction devices and PCI bridges help, but they are not really a solution
- Not a drop-in replacement

 \circ /dev/vda instead of /dev/vda complicates p2v/v2v

SCSI passthrough limitations

• No support for advanced features

- Persistent reservations
- Multipathing

• HBA device assignment is limited

- No migration
- Blades have a limited number of slots
- \circ Exposes the host fabric to the guest
- Kills pretty much all interesting scenarios
 - To be able to send SCSI commands, guests need exclusive access to a disk
 - No two guests can be initiators for the same device at the same time

virtio-scsi: solving virtio-blk limitations

- High performance
 - Keep the efficient design of virtio-blk
- Rich features
 - \circ Feature set depends on the target, not on virtio-scsi
 - Multipath: one virtio-scsi device = one SCSI host
 - Effective SCSI passthrough
 - Multiple target choices: QEMU, lio
- Almost unlimited scalability
 - Thousands of disks per PCI device
- Drop-in physical disk replacement
 True SCSI devices, good p2v/v2v migration

What is a SCSI transport protocol?

- SCSI defines a set of services exposed by the target
- A transport protocol provides the communication channel between initiator and target
- Many existing protocols:
 - Parallel SCSI
 - \circ SAS
 - Fibre Channel
 - \circ iSCS
 - SRP (IBM vSCSI)

The virtio-scsi transport protocol

- Three or more virtqueues: controlq, eventq, request queues
- Controlq for everything but SCSI commands
 - Invoke task management functions (Abort, Reset, etc.)
 - Subscribe to asynchronous notifications (media change)
- Eventq receives information from the host
 - Selected unit attention events: reset, hot-plug, hotunplug
 - \circ MMC asynchronous notifications
 - Events are delivered faster, and handled more easily than sense data
 - Guest can be notified of lost events, and fall back to sense data
- Request queues for SCSI commands
 Multiqueue possible, but *no ordering guarantees*

The two possible targets

- virtio-scsi (device & driver) acts as the initiator
- Who is the target?
 - Userspace QEMU target
 - \circ In-kernel linux-iscsi.org target

QEMU as a SCSI target

• QEMU provides a very basic target:

- Disk, CD-ROM, passthrough (scsi-generic)
- 1 logical unit per target
- Very small subset of the SCSI spec
- Other limitations:
 - No migration support
 - Designed for parallel SCSI
 - Limited hot-plug support

Improving the userspace target

Modernization started in 0.15 (Hannes Reinecke + myself):
 Remove relics of parallel SCSI

Actually follow the SCSI specification in more cases

Autosense

- New, more easily extensible API
- More work planned
 - Provide a better abstraction for target functionality
 - Scatter/gather lists for speed
 - Migration support
 - More flexible addressing (more LUNs per target)

Improving the userspace target

• All SCSIDevices reimplement parts of the spec

- Invalid commands
- Invalid LUN
- REQUEST SENSE
- REPORT LUNS
- Other features are completely missing
 - Unit attention
 - \circ Many more
- Abstract operations common to all devices
 - Avoid code duplication
 - Enables advanced features (hotplug, multiple LUNs per target, migration)

The missing features

Hot-plug

- Hot-plugging logical units is simple
- Hot-plugging targets requires collaboration from the transport protocol
- \circ Supported by virtio-scsi
- Migration
 - Does not happen often
 - Device triggers an internal reset just before migration
 - In-flight requests are resubmitted by the guest OS
- Scatter/gather support
 - Avoids bounce buffering: I/O goes straight from host device to guest memory
 - Generic implementation, not limited to PV devices
 - Can be used by all device models (MegaSAS)

Using the in-kernel SCSI target

New in-kernel SCSI target in Linux 2.6.38

- Fabrics: Fibre Channel, FCoE, iSCSI, SRP
- Backstores: Files, Block devices, SCSI pass-through
- Certified in Netgear, QNAP, Synology appliances
- Much more, see <u>http://linux-iscsi.org/</u>

Use LIO Target as KVM's SCSI emulation

- Robust, reliable SCSI target
- Direct guest to host kernel codepath, no userspace
- Powerful LUN and target management tools

How?

- Implement virtio-scsi using **vhost**
- tcm_vhost fabric module for LIO Target

tcm_vhost architecture: virtio SCSI using LIO Target

Stay tuned for more...

virtio-scsi draft specification is being discussed on qemu-devel@nongnu.org

tcm_vhost kernel code is in Nicholas Bellinger's lio tree: http://git.kernel.org/?p=linux/kernel/git/nab/lio-core-2.6.git; a=shortlog;h=refs/heads/master

virtio-scsi QEMU code is in Stefan Hajnoczi's qemu tree: http://repo.or.cz/w/qemu/stefanha.git/shortlog/refs/heads/virtioscsi