
Virtio SCSI
An alternative virtualized

storage stack for KVM

Stefan Hajnoczi
stefanha@linux.vnet.ibm.com

Paolo Bonzini
pbonzini@redhat.com

Overview

● Limitations in QEMU's storage stack
● virtio-scsi: a new storage stack for KVM
● Improving QEMU as a SCSI target
● tcm_vhost: using the in-kernel target with KVM

virtio-blk: features and shortcomings
● High performance

○ Paravirtualized device
○ Ring buffers provide a simple and efficient mechanism

for guest-host communication
● Limited features

● Limited scalability

● Not a drop-in replacement

virtio-blk: features and shortcomings
● High performance

○ Paravirtualized device
○ Ring buffers provide a simple and efficient mechanism

for guest-host communication
● Limited features

○ Even trivial new features require a change to the spec
○ Limited SCSI passthrough
○ No access to advanced features

● Limited scalability

● Not a drop-in replacement

virtio-blk: features and shortcomings
● High performance

○ Paravirtualized device
○ Ring buffers provide a simple and efficient mechanism

for guest-host communication
● Limited features

○ Even trivial new features require a change to the spec
○ Limited SCSI passthrough
○ No access to advanced features

● Limited scalability
○ One PCI device per disk
○ Multifunction devices and PCI bridges help, but they

are not really a solution
● Not a drop-in replacement

virtio-blk: features and shortcomings
● High performance

○ Paravirtualized device
○ Ring buffers provide a simple and efficient mechanism

for guest-host communication
● Limited features

○ Even trivial new features require a change to the spec
○ Limited SCSI passthrough
○ No access to advanced features

● Limited scalability
○ One PCI device per disk
○ Multifunction devices and PCI bridges help, but they

are not really a solution
● Not a drop-in replacement

○ /dev/vda instead of /dev/vda complicates p2v/v2v

SCSI passthrough limitations

● No support for advanced features
○ Persistent reservations
○ Multipathing

● HBA device assignment is limited
○ No migration
○ Blades have a limited number of slots
○ Exposes the host fabric to the guest

● Kills pretty much all interesting scenarios
○ To be able to send SCSI commands, guests need

exclusive access to a disk
○ No two guests can be initiators for the same device at

the same time

virtio-scsi: solving virtio-blk limitations

● High performance
○ Keep the efficient design of virtio-blk

● Rich features
○ Feature set depends on the target, not on virtio-scsi
○ Multipath: one virtio-scsi device = one SCSI host
○ Effective SCSI passthrough
○ Multiple target choices: QEMU, lio

● Almost unlimited scalability
○ Thousands of disks per PCI device

● Drop-in physical disk replacement
○ True SCSI devices, good p2v/v2v migration

What is a SCSI transport protocol?

● SCSI defines a set of services exposed by the target
● A transport protocol provides the communication channel

between initiator and target
● Many existing protocols:

○ Parallel SCSI
○ SAS
○ Fibre Channel
○ iSCS
○ SRP (IBM vSCSI)

The virtio-scsi transport protocol

● Three or more virtqueues: controlq, eventq, request queues
● Controlq for everything but SCSI commands

○ Invoke task management functions (Abort, Reset, etc.)
○ Subscribe to asynchronous notifications (media change)

● Eventq receives information from the host
○ Selected unit attention events: reset, hot-plug, hot-

unplug
○ MMC asynchronous notifications
○ Events are delivered faster, and handled more easily

than sense data
○ Guest can be notified of lost events, and fall back to

sense data
● Request queues for SCSI commands

○ Multiqueue possible, but no ordering guarantees

The two possible targets

● virtio-scsi (device & driver) acts as the initiator
● Who is the target?

○ Userspace QEMU target
○ In-kernel linux-iscsi.org target

QEMU as a SCSI target

● QEMU provides a very basic target:
○ Disk, CD-ROM, passthrough (scsi-generic)
○ 1 logical unit per target
○ Very small subset of the SCSI spec

● Other limitations:
○ No migration support
○ Designed for parallel SCSI
○ Limited hot-plug support

Improving the userspace target

● Modernization started in 0.15 (Hannes Reinecke + myself):
○ Remove relics of parallel SCSI
○ Actually follow the SCSI specification in more cases
○ Autosense
○ New, more easily extensible API

● More work planned
○ Provide a better abstraction for target functionality
○ Scatter/gather lists for speed
○ Migration support
○ More flexible addressing (more LUNs per target)

Improving the userspace target

● All SCSIDevices reimplement parts of the spec
○ Invalid commands
○ Invalid LUN
○ REQUEST SENSE
○ REPORT LUNS

● Other features are completely missing
○ Unit attention
○ Many more

● Abstract operations common to all devices
○ Avoid code duplication
○ Enables advanced features (hotplug, multiple LUNs per

target, migration)

The missing features

● Hot-plug
○ Hot-plugging logical units is simple
○ Hot-plugging targets requires collaboration from the

transport protocol
○ Supported by virtio-scsi

● Migration
○ Does not happen often
○ Device triggers an internal reset just before migration
○ In-flight requests are resubmitted by the guest OS

● Scatter/gather support
○ Avoids bounce buffering: I/O goes straight from host

device to guest memory
○ Generic implementation, not limited to PV devices
○ Can be used by all device models (MegaSAS)

Using the in-kernel SCSI target

New in-kernel SCSI target in Linux 2.6.38
● Fabrics: Fibre Channel, FCoE, iSCSI, SRP
● Backstores: Files, Block devices, SCSI pass-through
● Certified in Netgear, QNAP, Synology appliances
● Much more, see http://linux-iscsi.org/

Use LIO Target as KVM's SCSI emulation
● Robust, reliable SCSI target
● Direct guest to host kernel codepath, no userspace
● Powerful LUN and target management tools

How?��
● Implement virtio-scsi using vhost
● tcm_vhost fabric module for LIO Target

http://linux-iscsi.org/

Stay tuned for more...

virtio-scsi draft specification is being discussed on
qemu-devel@nongnu.org

tcm_vhost kernel code is in Nicholas Bellinger's lio tree:
http://git.kernel.org/?p=linux/kernel/git/nab/lio-core-2.6.git;
a=shortlog;h=refs/heads/master

virtio-scsi QEMU code is in Stefan Hajnoczi's qemu tree:
http://repo.or.cz/w/qemu/stefanha.git/shortlog/refs/heads/virtio-
scsi

http://git.kernel.org/?p=linux/kernel/git/nab/lio-core-2.6.git;a=shortlog;h=refs/heads/master
http://git.kernel.org/?p=linux/kernel/git/nab/lio-core-2.6.git;a=shortlog;h=refs/heads/master
http://repo.or.cz/w/qemu/stefanha.git/shortlog/refs/heads/virtio-scsi
http://repo.or.cz/w/qemu/stefanha.git/shortlog/refs/heads/virtio-scsi

